Free arrangements of hyperplanes over an arbitrary field

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative Algebras over an Arbitrary Field

R. D. SCHAFER The results of M. Zorn concerning alternative algebras are incomplete over modular fields since, in his study of alternative division algebras, Zorn restricted the characteristic of the base field to be not two or three. In this paper we present first a unified treatment of alternative division algebras which, together with Zorn's results, permits us to state that any alternative,...

متن کامل

Inductively Factored Signed-graphic Arrangements of Hyperplanes

In 1994, Edelman and Reiner characterized free and supersolvable hyperplane arrangements in the restricted interval [An−1, Bn]. In this paper, we give a characterization of inductively factored arrangements in this interval, and show that the same characterization also describes factored arrangements in this interval. These results use the compact notation of signed graphs introduced by Zaslavsky.

متن کامل

Del Pezzo Surfaces of Degree 6 over an Arbitrary Field

We give a characterization of all del Pezzo surfaces of degree 6 over an arbitrary field F . A surface is determined by a pair of separable algebras. These algebras are used to compute the Quillen K-theory of the surface. As a consequence, we obtain an index reduction formula for the function field of the surface.

متن کامل

Division of characteristic polynomials and the division theorem for free arrangements of hyperplanes

We consider the triple (A,A′,AH) of hyperplane arrangements and the division of their characteristic polynomials. We show that the freeness of A and the division of χ(A; t) by χ(A ; t) confirm the freeness ofA. The key ingredient of this “division theorem” on freeness is the fact that, if χ(A ; t) divides χ(A; t), then the same holds for the localization at the codimension three flat in H. This...

متن کامل

Minimal modularity lifting for GL2 over an arbitrary number field

We prove a modularity lifting theorem for minimally ramified deformations of two-dimensional odd Galois representations, over an arbitrary number field. The main ingredient is a generalization of the Taylor-Wiles method in which we patch complexes rather than modules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1983

ISSN: 0386-2194

DOI: 10.3792/pjaa.59.301